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We present an axiomatization of nonrelativistic quantum mechanics for a system 
with an arbitrary number of components. The interpretation of our system of 
axioms is realistic and objective. The EPR paradox and its relation to realism is 
discussed in this framework. It is shown that there is no contradiction between 
realism and recent experimental results. 

1. INTRODUCTION 

The interpretation of quantum mechanics (QM) has been a controversial 
subject over the last 50 years. A central point in this controversy is the debate 
between the realistic position and the orthodox line of the Copenhagen school. 
In recent years, this discussion has been reheated by some experiments testing 
the implications of the paradox formulated by Einstein, Podolsky, and Rosen 
(EPR) (1935). There is a widespread belief that the results of those experi- 
ments imply the refutation of realism and favor a subjectivistic vision of 
QM. However, these conclusions originate in an informal analysis of the 
structure of the theory. Any conclusion in the aforementioned sense should 
be a consequence of a careful study of a formalized theory of QM, in such 
a way that all the presuppositions and interpretation rules are explicit. Only 
in this case can one determine whether the realistic interpretation of the 
statements is consistent with the experimental results. 

In previous work (Perez-Bergliaffa et  al., 1993), we presented a realistic 
and objective axiomatization of QM for a single microsystem from which 
the main theorems can be deduced. Problems such as those arising from the 

~ Departamento de Ffsica, UNLE CC 67 (t900), La Plata, Argentina. 
2 Instituto Argentino de Radioastronom/a, CC5 (1894), Villa Elisa, Bs. As., Argentina. 
3FCA y G, UNLE Paseo del Bosque S/N (1900), La Plata, Bs, As., Argentina. 

1805 
0020-7748/96/090f)- 1805509.50/0 © 1996 Plenum Publishing Corporation 



1806 Perez-Bergliaffa, Romero, and Vucetich 

EPR paradox cannot be discussed in that axiomatic framework because they 
involve systems with more than one component. We develop here a generaliza- 
tion of  our preceding paper for the case of  systems with an arbitrary number 
of components. Armed with this new axiomatization, we analyze some inter- 
pretational issues of  QM. 

We briefly present in Section 2 the ontological background of  our inter- 
pretation, because it is of the utmost importance in all our arguments [for 
details, see Bunge (1977, 1979)]. In Section 3 we set forth the axiomatization 
of the theory, with its presuppositions, its axiomatic basis, the pertinent 
definitions, and some representative theorems. In Section 4 we discuss the 
relation between the EPR paradox and realism, and then we briefly sketch 
some items of the "consistent interpretation of QM" that can be deduced 
from our axiomatization. 4 

2, O N T O L O G I C A L  B A C K G R O U N D  

A consistent axiomatic treatment of  nonrelativistic QM for systems with 
an arbitrary number of components presupposes a theory o f  systems. This in 
turn can only be constructed on the basis of  an accurate characterization of 
the concept of individual and its properties. In this section we characterize 
aphysical system. We shall assume the realistic ontology of  Bunge [a complete 
and detailed analysis can be found in Bunge (1977, 1979)]. 

The concept of  individual is the basic primitive concept of any ontologi- 
cal theory. Individuals associate themselves with other individuals to yield 
new individuals. It follows that they satisfy a calculus, and that they are 
rigorously characterized only through the laws of such a calculus. These laws 
are set with the aim of reproducing the way real things associate. Specifically, 
it is postulated that every individual is an element of a set S in such a way 
that the structure ~ -- (S, o, D~ is a commutative monoid o f  idempotents. In 
the structure 7 ,  S is to be interpreted as the set of  all the individuals, the 
element D E S as the null individual, and the binary operation o as the 
association of individuals. It is easy to see that there are two classes of  
individuals: simple and composed. 

D~ x ~ S i s composedc=~3y ,  z e S ~ x = y o z .  
D~ x E S i s s i m p l e c = ~ 3 y ,  z E S ~ x = y o z .  
D3 x U-- y c==> x o y = y (x is part of y c=~ x o y = y). 
9 4 ~(X) ~- {y E S ~ y [: x} (composition of x). 

Real things are differentiated from abstract individuals because they 
have a number of properties in addition to their capability of association. 

~Some of the formal tools used in this work have been described in Perez-Bergliaffa et al. 
(1993) (mainly mathematical tools, such as ~ ,  G, etc.). 
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These properties can be intrinsic (PO or relational (Pr). The intrinsic properties 
are inherent and they are represented by predicates or unary applications, 
while relational properties are represented by n-ary predicates, with n > 1, 
as long as nonconceptual arguments are considered. For instance, the position 
and the velocity of a particle are relational properties, but its charge is an 
intrinsic property. 

P is called a substantial property  if and only if some individual x 
possesses P: 

Ds P ~ ~ ¢:~ (3x)(x ~ S ^ Px). 

Here ~ is the set of all the substantial properties. The set of the properties 
of a given individual x is given by: 

D6 P(x) - {P  e ~ ~ Px} .  

If two individuals have exactly the same properties, they are the same: Vx, 
y E S, if P(x) = P(y )  ~ x -- y. Two individuals are identical if their intrinsic 
properties are the same: x ~A y (they can differ only in their relational 
properties). 

A detailed account of the theory of properties is given in Bunge (1977). 
We only give here two useful definitions: 

DT P is an inherited property of x ¢=~ P E P(x) ^ (3y ) (y  e ~ ( x )  ^ y 
4= x ^ P ~ P(y)) .  

Ds P is an emergent property of x ¢:~ P ~ P(x) ^ ((Vy}~lx)(y ¢ x) 
P ~ P(y)) .  

According to these definitions, mass is an inherited property and viscosity 
is an emergent property in the case of a classical fluid. 

An individual with its properties make up a thing X: 

Df 

D9 X = (x, P(x)). 

The laws of  association of things follow from those of the individuals. The 
association of all things is the Universe (o'v). It should not be confused with 
the set of all things; this is only an abstract entity and not a thing. Given a 
thing X = (x, P(x)), a conceptual object named a model  Xm of the thing X can 
be constructed by a nonempty set M and a finite sequence ~ of mathematical 
functions over M, each of them formally representing a property of x: 

Df 

D10 X,,, = (M, ~),  where ~ = (~1 . . . . .  ~,,) m ~i: M ~ V,, 1 -< i 
-- n, V/vector space, ~i  ~ Pi ~ P(x). 

It is said then that X,, represents X: X,,, & X (Bunge, 1977). 
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The state of  the thing X can be characterized as follows: 

Dn Let X be a thing with model Xm = (M, ~) ,  such that each component 
of the function 

= ( ~ l  . . . . .  ~,,): M---) Vt X . . .  X V,, 

represents some P • P(x). Then ~i  (1 -< i <- n) is named the ith 
state function of  X, ~ is the total state function of  X, and the value 
of  U¢ for some m • M, ~(m),  represents the state o f  X at m in 
the representation X,,,. 

If all the V~, 1 --< i -< n, are vector spaces, ~ is the state vector of  X in the 
representation X,,, and V = Vt X . - .  X V, is the state space of  X in the 
representation X,,,. 

The concept of physical law can be introduced as follows: 

D12 Let X,, = (X, ,~) be a model for X. Any restriction on the possible 
values of  the components of ~ and any relation between two or 
more of them is a physical law if and only if it belongs to a 
consistent theory of  the X and has been satisfactorily confirmed 
by experiment. 

We say that a thing X acts on a thing Y if X modifies the path of Y in 
its space state (X D Y: X acts on Y). 

We say that two things X and Y are connected if  at least one of them 
acts on the other. We come at last to the definition of system: 

D~3 A system is a thing composed of  at least two connected things. 

In particular, a physical system is a system ruled by physical laws. A set of  
things is not a system, because a system is a physical entity and not a set. 
A system may possess emergent properties with respect to the component 
subsystems. The composition of  the system cr with respect to a class A of  
things is (at the instant t) 

Ca(oqt) = { X • A  ~ Xl-~r}  

DI4 ~4(o', t) = {X • A 3 X ~ (~A(ff, t) A (3 Y)r~A(O- ,) A (X [~> Y v Y 
D X))} is the A-environment of tr at t. If ~a(cr, t) = 0 :=~ cr is 
closed at the instant t. In any other case we say that it is open. 

A specific physical system will be characterized by making explicit its 
space of physical states. This is done in the axiomatic basis of the physical 
theory. In what follows we pay particular attention to a special type of  system: 
q-systems. 
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3. AXIOMATICS OF QUANTUM MECHANICS 

We present in this section the axiomatic structure of the theory following 
the main lines of our previous paper. The advantages of an axiomatic formula- 
tion are discussed in Bunge (1967a). 

3.1. Formal Background 

Pl Ordinary bivalued logic. 
P2 Formal semantics (Bunge, 19974a,b). 
P3 Mathematical analysis with its presuppositions and theory of gener- 

alized functions (Gel'fand, 1964/1968). 
P4 Probability theory. 
Ps Group theory. 
P6 Association theory (Bunge, 1977). 

3.2. Material Background 

P7 Chronology. 
Ps Physical theory of probabilities (Popper, 1959). 
P9 Dimensional analysis. 
Plo Systems theory (Bunge, 1977, 1979). 

3.3. Generating Basis 

The conceptual space of the theory is generated by the basis B of 
primitive concepts, where 

B = {]~, E3, T, ~E, ~', ~t, A, G, I-1, h} 

The elements of the basis will be semantically interpreted by means of 
the axiomatic basis of the theory, with the aid of some conventions. 

3.4. Axiomatic Basis 

QM is a finite-axiomatizable theory, whose axiomatic basis is 
36 

~A(QM) = /~ Ai 
i = l  

where the index i runs on the axioms. 

3.5. Definitions 
Df 

D~s K = set of physical reference systems. 
Dr 

Di6 I W(tI, k)) E W,, = is the representative of the ray W,~ that corres- 
ponds to the system tr with respect to k ~ K. 
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Di7 Y-,N = X,t X Zl  × " ' "  X Zt  (N t imes)  is the set  o f  all the sys tems  
c o m p o s e d  o f  e lements  o f  Z1. 5 

Dis ~ *  = { ~ 2 ,  ~1'~3 . . . . .  ~ N  . . . .  } 

Remark 1. With the a im o f  avoid ing  unnecessary  c o m p l e x i t y  in notation, 
we are not going to make  explici t  the dependence  o f  the opera tors  and the 
e igenvalues  on the reference system.  

Remark 2. The  domain  o f  the quant i f ied variables  is made  explici t  by 
means  o f  subindexes  o f  the quant i f icat ion parenthesis .  For  instance, 
(VX)A(3y)B(Rxy), means  that for  all x in A, there exists y in B such that Rxy. 

a 
Remark 3. The  symbol  = is used for  the relat ion o f  denota t ion [see 

Bunge  (1974a) for  details]. 

3.6. Axioms 

Group I. Space and Time 

A t E 3 --=- three-dimensional  Eucl idean space.  
A z E 3 & physical  space.  
As T -- interval o f  the real line ~ .  
A4 T & t ime interval. 
As The  relation <-- that orders T m e a n s  "be fo re"  v " s imul taneous  with." 

Group II. 

A6 

A7 

As 

A9 
Ato 

A n  
Atz 
At3 

Q-Systems and States 

Z1, ~ :  nonempty  numerab le  sets. 
e 

('qcr)x ~ (tr = s imple  microsys tem) .  6 
d 

('v'o')~=xlux* (tr = q-sys tem) .  7 
d 

(V~)~(~  = env i ronment  o f  some  q-sys tem) .  8 
(3K)(K C Y_, ^ the conf igurat ion of  each k e K is independent  
o f  time). 
( 'v 'k)x(qb)(b :' k). 
(Vtr)x(Vk)h,(k <:lid 0-). 
('v'(cr, ~ ) ) , : ,x~(3~e) (~E = (5O, ~ ,  5 ° ' )  --- r igged Hilber t  space).  

-SThe set EL will be characterized by AT. 
~r satisfies the set of axioms of our previous paper, so the definitions concerning tr given 
there are still valid. Also note that what is denoted here .X~ was denoted 'Y. in that paper. 

7Not every tr E V is necessarily a system as defined by DI3. However, with the aim of avoiding 
complex notation we commit an abuse of language in this respect. 

__ d '  __ d "~ - -  d 
s In particular, o'~ = the empty environment, (cr, tro)= a free q-system, and (o'o, o0) = the vacuum. 
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A14 

Group III. 

AI5 
A~6 
A~7 
A~s 
A~9 

A~o 

A21 

A22 
A23 

Group IV 

Az4 

A2s 

A26 

Az7 

There exists a one-to-one correspondence between physical states 
of cr ~ E and rays ~, ,  C ~ .  

Operators and Physical Quantities 

- nonempty family of applications over E. 
A - ring of operators over ~e .  
(VP)~(3cr)~(P ~ P(cr)). 
(VP)~(~,~)A(,~ ~ P). 
(Hermiticity and linearity) 
(Vcr)~(VA)A(VP)~(Vk)K(A & P A l q"(o'l, k)), l~rff(cr2, k)) E ~ e  ==> 
1. ~A,[hll~(oh, k)) + h21~Ir(0"2, k))] = hl.~l"~(o'l, k)) + 
h2A Iqr(cr2, k)) with hi, hz ~ ~;  2. / t*  = ,iO. 
(Probability densities) 
(V(o-, ~))~x~(VA)A(VP).~(Vla)):~e(VIaIt(G, k)))~ee(,4, A P ^ ,41a) 
= a la) ~ the probability density ( ¢ l a ) ( a l ¢ )  corresponds to the 
property P when ¢r is associated to ~), that is, f~l~ (¢la)(ald~) da 
is the probability for ¢r to have a value of  P in the interval [a~, a2]. 
(Vcr)~(V/t)a(Va)~(eiv A = a ^ ,4 b P ~ a is the sole value that 
P takes on o-). 
h e ~  +. 
[h] = L M T  -~. 

Symmetries and Group Structure 

(Unitary operators) 
(V(~r, ~))xx~(V,4)A(VP)~(V~0(,~ & P A 0 is an operator on ~ e  

(V(~r, -~))~×;3b(O)(b(O) is a unitary representation of rays of 
some central nontrivial extension of the universal covering group 

of a Lie group G by an Abelian one-dimensional group on ~E). 
The Lie algebra ~ of the group G is generated by {H, Pi, Ki, Ji} 
CA~ 
(Algebra structure) 
The structure of  ~,  Lie algebra of G, is 

[g,, fj] = ih~ijkL , [J/, Kj] = ih¢ij~f( k, 

[ ) , , ~  = o, 

[~,, ~q = o ,  

[)i, 1hi] = iheiik ['~ 

[Ki, I?1] = ihPi, [I(i, ~'j] = ih~if-4 

[k,,kA =o, [P,,PA =o, [Pj,~q =o  

[k , ,~  : o ,  [P,,~q =o, [~, ,~ =o  
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A28 

where 19I is an element of  the Lie algebra of some one-parameter 
subgroup (which is used to extend G). 
M has a discrete spectrum of real and positive eigenvalues. 

Group V. Gauge Transformations and Electric Charge 

AB9 ( 'q ' (o ' ,  ~>)~x£(VA)A(a0)A(0 4= ,I A ([0/~] = 0). 
A30 Q has a discrete spectrum of real eigenvalues. 
A3t Q is the generator of  gauge transformations of  the first kind. 
A32 There exists a sole normalizable state with eiv Q = 0, called the 

neutral state. 
A3a There exists a sole normalizable state, called the vacuum, that 

is invariant under D((~) and under gauge transformations of  the 
first kind. 

Group VI. Composition Axioms 

Aa4 (Product Hilbert space) 
(V<00, ~))~×£(~(00) = {o°1 . . . . .  00.} ~ ~ E  = ®%t ~Ei). 

A3s (V(00, ~))~ x~(V I ~))~E(3 Un)(Un is a representation of a symmetric 
group I] by unitary operators Un A 

/~/n I ~ )  = Un { I ¢~) ® I ¢~) ® . . -  ® I ¢~) } 

where {cq . . . . .  et,} is a permutation e of { 1 . . . . .  n}). 
id 

A36 (V(00, ~))Ex~(VA)A(VIXIt))~E(C~(00 ) = {13" I . . . . .  O'n} A O" i ~ 00j A 
IV) = 0 n l ~ ' )  ~ <~IAI~>  = ( ~ ' I A I ~ ' > ) .  

Remark. Note that ~ is a representation by operators of  the extended 
Lie algebra of the Galilei group that acts on a Hilbert space. For other 
representations, see Levy-Leblond (1963), 

3.7. Definitions 

Df 
D19 (V(00, ~))~xE(Ve)~(/=/I~(00, k)) = e1~(00, k))), e = energy of 00 

in the state 1~(00, k)) with respect to k E K when it is influenced 
by ~. 

Df 
D2o (V(00, ~))~x£(Vp/)~(/5il x It(00, k)) = pil ~(cr, k)), Pi = ith component 

of the lineal momentum of 00 in the state l~(tr ,  k)) with respect 
to k e K when it is influenced by ~. 
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Df 

D21 (V(cr, ~)z×~(Vji)~(JilV(cr,  k)) = j i l V ( m  k))),ji = ith component 
of the angular momentum of o" in the state I x It(0r, k)) with respect 
to k s K when it is influenced by ~. 

Df 
Dz2 ('7'(o', ~))vx~(Vm)~(Ai/IV(o ", k)) = m IV(or, k))), m = mass of or. 

Df 

Oz3 Xi = (l/m)[(,. 
Df 

Dz4 (V(cr, -ff))zx~.(Vxi)~(Xil V(cr, k)) = xil V(cr, k))), xi = ith component 
of the position of the center o f  mass of cr in the state I V((r, k)) 
with respect to k e K when it is influenced by ~. 

Df 
Dzs (Vq)~(01V(o', k)) = q l V(o', k))), q = electric charge of cr when 

it is influenced by ~. 
Dz6 ~ s  = {IV) ~ IV) e ~ e  A 0 r l V )  = IV), T transposition }. 
D27 ~A --= { 1 V) 3 I "It) e ~ e  A Url V) = - t V), T transposition }. 

Df 
Dzs ~ = space of accessible states to a given physical system o- e E. 

Remark 1. The names given to the eigenvalues in the above definitions 
are merely conventional and they do not imply that our axiomatics presup- 
poses any concept of classical physics. Any identification between a property 
of the q-systems and a macroscopic property of classical physics must be 
justified a posteriori. 

Remark 2. The meaning of the expression center o f  mass can be estab- 
lished by means of Tv 

3.8. Theorems 

In this section we give some illustrative theorems that can be deduced 
from the axiomatic basis. We are not going to repeat here the theorems valid 
in the case of simple microsystems (for instance, probability amplitudes, 
Schrtidinger equation, Heisenberg inequalities, Heisenberg equation, superse- 
lection rules, spin). Such theorems can be found in our previous paper. 

T~ (Add~tivity theorem) 
( v ' ( o ,  ~ ) ) z × Z ( V k ) ~ ( o ' )  = {o'~ . . . . .  o',,} ,,. 
[P,, ~jA = ihB,^, Dj, xj~] = ihejjj(, , ,  
[P i , /~ ]  : o, [~, PI,] = iheijkP~,, 
[Ki, )(jr] = 0, [Ki, Pjr] = ihBijm~ 
( i , j  = 1 , 2 , 3 ; r  = 1,2 . . . . .  n) 

,e,,. = z f=, P,.~ ̂  2, = Z.7=, L ^ , ¢ ,  = z"=,  Ls. , ,  # = z~=, .,ft,.). 

Proof  From Ps and A3s. 

Tz ~ s  G ~,~ C 1~e is a vector subspace of ~E- 
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Proof  From the definitions given above. 

T3 (Symmetrization theorem) 
(V(~, ~)),.:×~(~ps = ~s  @ I~A) 

Proof. Let I ~ ( a ) )  be such that 

OTI I,(~)) = xTI I,(o-)) (1) 

Applying two transpositions Tt and T2, we obtain 

On&nl1,(o-)) = x n x n l , I , ( , ~ ) )  

In addition, applying the transposition Ti T2, we find 

Onnl1,(0-)) = Xnnl1,(0-) ) 

From A36 and Ps, h T ~  = hT~kr2, and then hr  is a scalar representation of 
the group IF[ 

There exist only two scalar representations of I-I (Cornwell, 1984): 

(VT)(hT = 1) v (kr  = +1,  Teven  A kr = --1, Todd)  

Then, from (1), 

(11,(0-)) ~ ~s )  v (11,(0-)) ~ ~ )  (2) 

Let now I qs(0-))s E i~ s and 11,(0-))A ~ 9~a; then 

S(1,(0-) I aJx)'(0.))A = S(aIl(o') I UrtUr  1 1,(0.))A 

= S(1,(0-)UTI UT1,(~r))A 

= - s ( 1 ~ ( 0 - )  I q~(0.))~ 

That is to say, 

Finally, from (2) and (3), 9~9s~ = ~ ¢ ~ .  

Corollary (Pauli's Exclusion Theorem): 

id 
(V(o- ,  ~))~_×v.(~(o-)  = Io ' t  . . . . .  0.,,} ^ 0.i "-' o'j =~ 1"-I,'(0.)) e I ~ . ~ )  

T 4 (V(0. ,  ~ o ) ) ~ x ~ ( ~ ( o ' )  = 10.1 . . . . .  0" , , }  

fJ = 2 m, i= I i<j  

with 

V(si, sj) = V~(r o) + V2(r~j)(gi'~j) + V3(ru)[3(~'n~j)(~j'nij) - ~'gj] 

(3) 
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where 

Df h Dr rij 
r i j  : I x i - -  X i I ,  S i = ~ %, n o = - -  

r i j  

and % are the Pauli matrices) 

Proof. From A2s, Ps, and Tl. 

R e m a r k  1. The first (second) group of commutation relations in T~ 
means that the behavior of each simple microsystem under a Euclidean 
motion (instantaneous Galilean transformations) is unaffected by the presence 
of interactions, 

R e m a r k  2. If ¢r ~ ~ such that COx) = {¢r~ . . . . .  (r,,}, and o-~ interacts 
weakly with trj, ~/-7/,~ = :El/:/,~ + O(h), where h is some coupling constant. 

R e m a r k  3. T 3 is the so-called symmetrization postulate. Here it is a 
theorem implied by the axiomatic core. 

R e m a r k  4. There exist some systems whose representative kets have no 
definite symmetry when a physical space with nontrivial topology is consid- 
ered (Girardeau, 1965). Such systems are excluded in the present work because 
of A1 and A2: it is possible to build a coordinate representation of the operator 
UT in E3 without any additional restriction. 

4. DISCUSSION 

The axiomatization of QM in the case of a q-system with an arbitrary 
number of components developed in this work is realistic and objective. It 
is realistic because it assumes that the objects contained in the ontology (that 
is, the set E U ~) exist independently of sensorial experience (contrary to 
the fundamental thesis of idealism). It is objective because cognoscent subjects 
or observers do not belong to the domain of quantification of the bound 
variables of the theory. 

It is worth noticing that the realistic thesis does not imply that all the 
functions that represent properties of real objects must have definite values 
simultaneously, as classicism requires (Bunge, 1989). This is clearly seen in 
Heisenberg's inequalities [they follow from A2s; see Perez-Bergliaffa et  aL 
(1993)]: they have nothing to do with measuring devices. They reflect an 
inherent property of every microsystem. 

At this point, an important difference should be remarked between 
realism and classicism. The former is a philosophical conception regarding 
the nature of the objects studied by the theory, while the latter is only a 
specific feature of certain theories (see Bunge, 1989). 
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In recent years, it has been argued that the fall of Bell's inequalities 
leads to the conclusion that realism is inconsistent with experiment. However, 
as we show in the next section, such a refutation does not threaten in any 
way the realistic thesis adopted here. 

4.1. EPR and Realism 

Let cr ~ ~ ~ ~(0-) = {0-1, 0-2} =~/5 = Pl + /52 by Tl. It follows from 
A2s that [,YI - -k'2,/5] = 0, and then, from Ts of Perez-Bergliaffa et al. (1993), 
the quantities associated to the operators ,Y~ - ,~2 and/5 are simultaneously 
well defined and can be measured with as much precision as the state of the 
art allows. Let us suppose now that the components 0-~ and 02 are far away 
from each other in such a way that, for the purpose of  experiment, they can 
be considered as isolated. Solving Schr6dinger's equation [T4 of Perez- 
Bergliaffa et al. (1993)] in the center-of-mass system of  0- for a null potential 
(see, for instance, De la Pefia, 1979), we find (in the coordinate representation) 

xIt(Xl, X2) "= ~(X --  a ) e  ip(xl+x2112h (4) 

where a is the relative separation between 0-~ and 0-2. If we now measure the 
position of 0-~, we can infer (from the relation x~ - x2 = a) which value 
would be found if we measure the position of  0-2 immediately after the first 
measure was carried out. Assuming that there is no action at distance in a 
quantum sense (i.e., that two subsystems sufficiently far apart can be consid- 
ered as isolated, an assumption known as locality or separability), the inference 
of xz is made without perturbing 0"2 in any way. It follows then that the 
position of or2 has a definite predetermined value not included in (4). This 
implies that the description given by QM is incomplete. By the same reason- 
ing, it can be inferred that the lineal momentum of 0-2 also has a definite 
value, at variance with Heisenberg's inequalities. Then both the position and 
the lineal momentum of  0-2 have a definite predetermined value: we do not 
have to work out any additional measure to know them. This clearly contra- 
dicts the subjectivistic Copenhagen interpretation. 

The argument given above is a brief account of the so-called "EPR 
paradox." In short, it states that if locality is accepted in QM, then the theory 
must be incomplete. In other words, the theory must have hidden variables 
(Bohm, 1953). Moreover, a theorem due to Bell (1966) shows that the predic- 
tions of deterministic, local theories that have hidden variables can be com- 
pared, by means of a given class of  experiments, with the predictions of QM. 
Experiments of such a class were carried out by Aspect et aL (1981, 1982), 
and their results are in complete agreement with QM. 

The reader should note that these results do not affect the realistic 
philosophy that underlies our axiomatization. In fact, as was shown by Clauser 
and Shimony (1978), 
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(Hidden Variables ^ Separability) ~ (Bell's inequalities) 

It follows that if Bell's inequalities are refuted by recourse to experiment, 
then (1) theories with hidden variables are false (i.e., QM is complete) or 
(2) the theory is nonlocal, or (3) both (1) and (2) are true. The axiomatization 
we present here assumes nonlocality and completeness, so it predicts that 
Bell's inequalities are false. The nonlocality originates in the systemic point 
of view adopted in the background material (more precisely, in P~0; see 
Section 2 for details), while completeness is introduced through AIg, according 
which every property of the physical system under study has its mathematical 
counterpart uniquely defined in the theory. 

In brief, the axiomatization we present here is realistic, objective, nonlo- 
cal, and complete. These features are essential for the study of quantum 
cosmology, to which the orthodox (subjectivistic) interpretation cannot be 
applied successfully. 

The system formed by the association of all the things is the Universe 
(00u, see Section 2). By definition, the environment of 00u is the empty 
environment: ~u = ~0. It follows that any interpretation of QM that requires 
external observers to produce the collapse of the wave function cannot be 
applied to the study of 00u- In this case it is mandatory to have at our disposal 
an objective interpretation. The usual approach (based on the wave function) 
presupposes the interpretation of Everett (1957) or variations of it (see, for 
instance, Halliwell, 1992). Our axiomatization shares with Everett's interpre- 
tation both realism and the lack of a need for von Neumann's projection 
postulate. However, the theory of measurement that follows from our axioma- 
tization does not entail the introduction of the "many worlds," as will be 
discussed elsewhere. 

4.2. Some Remarks on the "Consistent Interpretation" 

Recently, Griffiths (1984), Oran,s (1992), and Gell-Mann and Hartle 
(1990) have developed a new formulation of QM: the so-called "consistent 
interpretation." They claim it is both realistic and objective. In the following, 
we shall argue that their main physical results can be obtained as theorems 
in our formalism, although detailed proofs, which are lengthy, will be pre- 
sented elsewhere. 

In the consistent interpretation, the density matrix plays a central role. 
This concept is secondary in our axiomatization because the notion of partition 
of a system 00 into two subsystems [i.e., 00 = o-j ~- o°2, where the symbol 
-i- means physical sum (Bunge, 1967b)] has been incorporated in the ontologi- 
cal background. Starting from this partition, it is possible to show that the 
state of each subsystem is represented by a density operator Pi [see Balian 
(1982) for a nonrigorous proof]. 
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The existence of the classical limit can be proved in our formulation 
essentially in the same way as in Omn~s (1992). Specifically, there exists a 
many-to-one partial function ~ that associates a function ~(p ,  q) (which 
depends on classical phase space variables) to operators fi,(p, ~). The function 
~(p ,  q) is the classical counterpart of /](p,  ~). The function q~ is many to 
one because, due to the lack of commutativity of the operator ring, several 
operators have the same classical counterpart, and it is partial because dynami- 
cal variables such as spin have no classical counterpart. 

With these elements and the aid of our axiomatics, we could construct 
a "theory of measurement." If the system o" is decomposed as 

a = as ~- aA -i- ~s (5) 

where as is the subsystem on which the measure is performed, aA is the 
"apparatus," and ~s is the "environment," then, with suitable restrictions on 
the three subsystems, the main results of measurement theory could be 
deduced as in Omn~s (1992). 9 

"Wave packet reduction" can be expressed as a trace on the density 
matrix of the "apparatus" subsystem (Ltiders, 1951; Omn~s, 1992). This is 
probably the closest one can get to a proof of "von Neumann's projection 
postulate" in our formulation. However, no physical process is involved in 
the reduction: it is a mathematical device to describe a subset of initial 
conditions (Omn~s, 1992).1° 

5. CONCLUDING REMARKS 

We finally would like to point out here that certain realistic interpretations 
of MQ cannot face successfully the refutation of Bell's inequalities. This is true 
for deterministic interpretations, i.e. interpretations that imply the existence of 
hidden variables that complete the classical characterization of the state of 
the particles that compose the statistical ensembles. This failure is avoided 
by a literal (i.e. strictly quantum) interpretation. We have shown here that 
such an interpretation is possible. Moreover, our axiomatics offers a well- 
suited frame for the analysis of recent attempts focused on obtaining the 
classical limit as an emergent property in a macroscopical system from the 
constituent microsystems, by means of a decoherence process. This line of 
research will be developed elsewhere. 

9We should remark that the resulting measurement theory does not apply to real situations, 
but to the analysis of highly idealized typical experiments: it can predict accurately no 
outcome of a single real experiment (Bunge, 1967b). 

")The main role of the environment is to produce decoherence on the density matrix of the 
other two subsystems, forcing them into a diagonal form (Omn~s, 1992; Paz, 1994). There 
should exist a many-one function mapping (sets of) states of Es into well-defined states of Ea. 
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